Hopf algebras for ternary algebras and groups

نویسنده

  • M. Goze
چکیده

We construct an universal enveloping algebra associated to the ternary extension of Lie (super)algebras called Lie algebra of order three. A Poincaré-Birkhoff-Witt theorem is proven is this context. It this then shown that this universal enveloping algebra can be endowed with a structure of Hopf algebra. The study of the dual of the universal enveloping algebra enables to define the parameters of the transformation of a Lie algebra of order three. It turns out that these variables are the variables which generate the three-exterior algebra. We construct explicitly groups associated to Lie algebras of order three. An explicit matrix representation of a group associated to a peculiar Lie algebra of order three is constructed considering matrices with entries which belong to the three-exterior algebra. PACS 02.10.Xm, 02.20.Sv, 11.30.Ly

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary Hopf Algebras

Properties of ternary semigroups, groups and algebras are briefly reviewed. It is shown that there exist three types of ternary units. A ternary analog of deformation is shortly discussed. Ternary coalgebras are defined in the most general manner, their classification with respect to the property “to be derived” is made. Three types of coassociativity and three kinds of counits are given. Terna...

متن کامل

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009